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New Theory and Design for Hairpin-Line Filters

ULRICH H. GYSEL, MEMBER, IEEE

Abstract—Hairpin-line and hybrid hairpin-line /half-wave parallel-
coupled-line filters are preferred filters for microstrip and TEM
printed-circuit realizations. This class of filters offers small size and,
in general, needs no ground connections for resonators.

A new design theory is presented that is based on a sparse capaci-
tance matrix for the array of coupled lines that constitute the filter,
as opposed to a sparse-inductance-matrix assumption in previous
theories that is much harder to satisfy. It is shown that to a good
approximation, hairpin-line filters result from frequency-scaling
half-wave parallel-coupled-line filters. Because of this; the band-
width can be accurately predicted.

Design procedures are given for Type-A ﬁlters, which are useful
up to 20-percent bandwidth. A variety of hybrld hairpin-line /half-
wave parallel-coupled-line filters is possible, and their design is
explained. Numerical results for a number: of designs and experi-
mental results for a 5-percent bandwidth filter are included.

I. INTRODUCTION

HE hairpin-line filter, like the half-wave parallel-

coupled-line filter, is one of the preferred configura-
tions in stripline or microstrip becauge ground connections
are not required. Basically, the hairpin-line filter can be
thought of as a folded version of a half-wave parallel-
coupled-line filter. The hairpin-line filter makes 'a much
more compact filter than the half-wave parallel-coupled-
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line filter, but is expected to have much the same per-
formance. However, the additional coupling between the
two lines that constitute a hairpin resonator complicates
the design.

The image paramefgers for the infinite periodic hairpin
line have been reported by Bolljahn and Matthaei [1].
Only recently, design equations have been given for finite
length hairpin-line filters by Cristal and Frankel [2].
Their design theory is based on the assumption of a sparse
inductance matrix for the array of coupled lines. But for
most parallel-coupled-line-type filters, the assumption of a
sparse capacitance matrix is made. This, as Cristal and
Frankel [2] state, corresponds much more closely to the
physical reality than does neglecting inductive coupling
beyond nearest neighbors. Further, this design theory [2]
needs an empirically determined bandwidth contraction
factor, depending on the hairpin resonator coupling.

The present paper gives exact equivalent circuits for
odd-order hairpin-line filters of Types A and B that are
based on a sparse capacitance matrix. This leads to designs
that are exact for any practical purposes up to 20-percent
bandwidth for Type-4 filters and up to 50-percent band-
width for Type-B filters. In particular, the bandwidth can
be predicted aceurately. From a theoretical point of view,
it is most interesting that the new design method explains
the bandwidth contraction factor in [2] and particularly
shows that it is independent of the number of resonators,
of passband ripple, and, largely, of bandwidth. This is the
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primary contribution of the new theory. For the practical
design of these filters, only a slight improvement over
Cristal and Frankel’s design [2] is achieved.

In most cases a hybrid hairpin-line/half-wave parallel-
coupled-line filter will be preferred because a serious
surface-wave-mode problem exists [2] in pure hairpin-line
filters constructed in microstrip form. This mode can be
prevented by the use .of hybrid hairpin-line/half-wave
parallel-coupled-line designs. A large variety of hybrid
designs for any bandwidth can be readily developed by the
method presented here. Hybrid even-order filters also can
be demgned with high accuracy.

The new design is based on the general n-wire hne, as
discussed by Matsumoto [3]. An n-port is created by look-
ing into the n-ports at the input of an n-wire line that is
terminated in an ideal transformer bank at the far end.
For that n-port an equivalent circuit is developed. By
neglecting insignificant terms, this circuit can be identified
with a modified equivalent circuit of the half-wave parallel-
coupled-line filter. The new theory has been verified with
several trial designs and experimental results on a 5-per-
cent-bandwidth filter are presented.

II. EQUIVALENT CIRCUITS FOR ODD-ORDER
HAIRPIN-LINE FILTERS

A. The General n-Wire Line Representation

The general n-wire coupled-transmission line above a
ground plane, shown in Fig. 1, may be described by the
admittance equation:

7 nXn nXn vy
2 ] —i[C] vy
=3 (n)
T nXn nXn Un
—i[C] L]
_i;"_ L L Ven ]

where

8 = jtan Bl = j tan (xf/2fo) ;

8 propagation constant;

l a commensurate length of the network;

¢ (1 — )12 (2)

b frequency variable of the commensurate
network;

So quarter-wave frequency of the commen-
surate network; '

matrix [C]] static capacitance distribution for the

coupled-line network normalized to Y ,p™,
where Y, is a normalization admittance
and p is the velocity of light in the medium
of propagation.

The elements of the matrix [C] are defined by:
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Fig. 1. General coupled n-wire line above a ground plane.
[ C;l —Cu —Cis ]
~Ch Coe —Chy
[C1= (3)
—Cs Csz  +--
- Cnn_
where
C,j = C]'i
Ci; >0
Cii > E Cij, for ¢ = 1,2,' LY () (4)
Fa)

It is convenient to assign separate voltage and current
vectors to the two different sides of the n~wire line, called
primary side and secondary side, respectively:

[Il_-.] = [ilin} *e '}in:__lT
[12] = [iﬂ+17in+2’ < ';’i2an

[Vl:l = [vlyv2; i ';vn]T
EV2] = [vn+1,vn+2) ¢ '7v2n:|T- (5) 1
A compagct form of (1) therefore reads:
= N (6)
I, —i[c] [C] Vs

Hairpin-line filters can be visualized as n wire lines with
interconnections on both sides. Fig. 2 shows hairpin-line
filters of Types 4 and B, both of odd order. To derive
their equivalent circuit we follow a procedure described by
Matsumoto [3, ch. 8]. The interconnections on both sides
of the n-wire line are made with ideal transformer banks.
Let us terminate the secondary side by the transformer
bank- T%. Then the transformed variables are defined as
follows:

[Z'] = [T2][1.] (7)

and

LVe] = [T.1"LVY]

with [T5] a 7, X n matrix.
The case of a hairpin-line filter of Type A, together with
the appropriate form of [T.], is shown in Fig. 3. Sub-

(8)

1T denotes the transposed matrix or vector.
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Fig. 2. Hairpin-line filters.

stituting (8) into the second row of (6) and multiplying
both sides by [T from the left gives

(1) = (18] = — < [I0CTVA]

+ ‘13‘ [TILCILTI TV (9)

However, [I,’] = [0], as can be seen from Fig. 3. We solve
(9) for [Vy'] and substitute this into the first row of (6).:
With the notation

[C] = [TJCIT.]" (10)

this yields
11 = { ey - £ pernyrorrrael} ol an

Recognizing that 2 = 1 — s?, we can write this as

(L] = {l (e + s[:cej} (V] (12)

where
[Ce] = [CTTILCTIT.C] (13)
[C2] = [€] = [Co) (14)

If some lines on the primary side are interconnected, we

m,xn

Iy 2 3 4

:—-— —0— —0~ — —O— — — *—0——9——1' 11 0

PRIMARY T[T, =

SIDE | I | 1[m] M,
L—o—0— 0 — —Y— —o—0 - 0 -

1 21 3| 4] 5

SECONDARY
SIDE

—b—d 00— -0 —&— 1
t tlj i e [ -] e
—_—t e - ——D —— O — 0 1"

Fig. 3. n-wire line and transformer banks to form a hairpin-line
filter of Type 4 (n = 8).

r——=="
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proceed in a similar way with a transformer bank T4,
which is given by
(1] = [T\
Vil = [Th IV ]

where [7;]is an m; X n matrix.
Substituting (15) into (12) results in

(15)

] = [0 {f [0 + ofced} L23TID o)

Now, for the example of Fig. 3, we have to impose the
condition 7’ = 0. This requires the hairpin resonator that
is formed by connecting nodes 4 and 5 on the primary
side? to operate essentially in an odd mode as long as only
the admittance matrix of the n-wire line without termina~
tions is considered. The odd mode of operation is forced by
changing the voltage reference of lines 5-8 and then
equating v, to —uv5. The transformer network [7] is also
shown in Fig. 3. With the notation

[Cx] = [TC.ILT

[Cc'] = [T LCALT I (17
(16) can be written as
= e+ e as)
and
[C:"]+ [C] = [TWILCI[T]" = [C"].  (19)

B. The Equivalent Clircuit

To find an equivalent circuit for the odd-order hairpin-
line filter of Type A, we notice that (12) and (18) repre-
sent a parallel connection of two n and m; ports, respec-
tively, one purely inductive, and the other purely capaci-
tive. Fig. 4(a) shows the equivalent circuit corresponding
to (12). Since a Type-A hairpin-line filter has no lines
connected to ground, no grounded inductor can appear in
the equivalent circuit. Series inductors exist between those
primary side ports that show a dc path between them
due to an interconnection on the secondary side. All
inductors are coupled to each other and, to satisfy (14),
these inductive couplings are accompanied by capacitive
couplings of the same amount, which can be seen as
follows. We recall that [C] is assumed to be a sparse
matrix. If we denote the elements of [C] and [C¢] by
v:; and §,;, respectively, then (14) can be written as

Ciiy J =1
Yi; = 8s = —Cy J=1+x1 (20)
0, J#FE 11

2 Throughout the rest of the paper such hairpin resonators will be
simply called primary-side resonators. In the same way, hairpin
resonators folded on the secondary side and with their open-circuited
ends on the primary side are called secondary-side resonators.
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Fig. 4. Equivalent circuit of the Type-A hairpin-line filter (n = 8).
(a) Without transformer bank T (b) Complete equivalent
circuit. (¢) Simplified equivalent circuit.

or| vyl =18, for all j # 4, ¢ £ 1, which holds for all
inductive couplings.

The effect of the transformer [7,], which is not yet
included in the circuit of Fig. 4(a), is to combine nodes
4 and 5 in one single node 4'. This leads to the final
exact equivalent circuit of Fig. 4(b). Due to the form of
[T.], the transformation (19) results also in a sparse
[C’] matrix, and thus an 'equation analogous to (20)
could be written down for the elements of [C’] and
[Co'].

The numerous capacitive and inductive coupling ele-
ments beyond immediate neighbors in Fig. 4(a) and (b)
decrease rapidly the more lines they cross. If we define
coupling factors of the [C] matrix by

Cij

C = @l

J=i+1 (21a)

or, in decibels,

cp = —20 logy Cp (21b)

then the coupling elements between two nonadjacent
lines having, say, r lines between them is on the order of
C,**1. This was verified numerically in a number of cases.
For many practical hairpin-line filters these coupling
elements are so smalil (e.g., less than 1 / 50 of the mutual
coupling in the original airay) that they can be safely
neglected. This leads to a simplified equivalent circuit as
shown in Fig. 4(c).

Finally, we will examine the zeros of the parallel-tuned
circuits that exist between ports 2’ and 3/, and ports 5’
and 6. If v,/ and 3,/ denote the elements of [C;/] and
[C¢'], respectively, the passivity of the circuit requires
Vit < 0,7 = 2,5 (positive inductors). A detailed analy-
sis of (13) and (18) shows that 8,4/ >0, ¢ = 2,5,
indicating a negative capacitor. Hence, these series
branches create a transmission zero:

TFy04+1 — (—_’Y’L,l+l,/6’i,’b+l,) vz 2. ]-; 7’ = 275' (22)
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CTTTT?:

Fig. 5. Equivalent circuit of the Type-B hairpin-line filter (n = 8).
(a) Complete circuit. (b) Simplified circuit.

Equation (22) holds with an equal sign for C; .../ = 0.
The physical reason for this real transmission zero be-
comes obvious if we look into the n-wire line from ports
2’ and 3’. From these ports a secondary-side hairpin
resonator looks essentially like a microwave C section. The
latter has a real transmission zero o > 1. Actually, the
m-network present in Fig. 4(c) between ports 2’ and 3’ is
one possible form for an equivalent circuit of a C' section.

The procedure used to develop the equivalent circuit for
Type-B filters is analogous to that for Type 4. The only
difference is the form of the transformer banks [ 7] and
[T.]. Fig. 5 gives the complete and the simplified circuit
for such a filter consisting of n = 8 lines.

The analysis presented in this section works well as long
as input and output are on the same side of the n-wire
line. This is the case for all odd-order filters. For even-
order filters, if the input is on the primary side, then the
output is on the secondary side. The output is therefore no
longer an accessible port in an equivalent circuit of the
form of either Fig. 4 or Fig. 5. A method to handle those
cases is presented in the next section, together with the
design procedure for odd-order filters.

ITI. DESIGN PROCEDURES FOR
HAIRPIN-LINE FILTERS

In this paper, design procedures only for Type-A filters
are developed. For the design of hairpin-line filters, it is
most helpful to remember the close relationship between
these filters and the half-wave parallel-coupled-line filters.
In the limiting case, a hairpin-line filter with no coupling
between the lines constituting hairpin resonators (here-
after simply called hairpin coupling) must be identical
with a half-wave parallel-coupled-line filter. Therefore,
the equivalént circuit of the hairpin-line filter, shown in
Fig. 6(a), must be equivalent to the circuit of Fig. 4(b).

A. The Design Procedure

Networks containing unit elements like those shown in
Fig. 6(a) cannot be frequency scaled in general (see e.g.,
Wenzel [4]). What can be scaled in frequency is the cas-
cade connection of two unit elements, which can be repre-
sented differently by means of lumped equivalent circuits.
One such representation is a = network containing a series
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Z1 Z Z5
— e T—
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Fig. 6. Development of hairpin-line filters.

branch with a parallel-tuned circuit that creates the real
transmission zeros at s = &1 (the series C is negative).
When this circuit is scaled by f/ == of, the new circuit can
be realized as a microwave C section [4].

The effect in this simple case is the introduction of
coupling between two formerly uncoupled lines. But in-
troducing coupling between formerly uncoupled lines is
exactly the process that leads from half-wave parallel-
coupled-line filters to hairpin-line filters. Therefore, it must
be possible to frequency scale any odd-order half-wave
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parallel-coupled-line filter and transform it into a hairpin-
line filter. It actually is possible to do this. We will prove
it by carrying out the transformation steps and showing
that the final capacitance matrix of the n-wire line is
hyperdominant.

First, we outline the design procedure steps, and then
give a closed form for the capacitance matrix of the n-wire
line. This can be immediately used to determine the physi-
cal dimensions of the filter. We start with the selection of
an appropriate half-wave parallel-coupled-line filter of
odd-order N, as depicted for N = 3 in Fig. 6(a). For
narrow-band cases this circuit has to be augmented by
unit elements at the input and output to give reasonable
impedance levels in the interior of the filter. Element
values for the capacitors and unit elements may be taken
from Cristal [5] or Horton and Wenzel [6]. The latter
contains extensive tables for element values of interdigital
filters. Filters with short-circuited input lines are duals of
half-wave parallel-coupled-line filters of Type A. There-
fore, using these tables we have to interpret the table
value as elastances of the capacitors and impedances of
the unit elements.

Next, we remove the series capacitors between every
other unit element, as indicated in Fig. 6(b). This can be
done most conveniently by an elastance matrix trans-
formation. By using the tables in [67], the tabulated values
directly become the normalized elastances and impedances
if divided by 7.54. By labeling them Z;,Z;- + -, we form the
initial elastance matrix as given on the left side in the
following:

X m X ns
1 -1 0 0 0]
—1 1+Z1+Z2 —Zz 0 0 x/"h‘
0 —2Z, Zy+ Zs+ Zs ~Zs 0
0 0 -7, Z4+Z5+1 -1 X ns
L 0 0 0 -1 1]
-
(1,1 1 ) o o
Y, Y. Y.
1 1 1 1
—= = - = 0 0
Yz Y2 Ys Y3
1 1 1 1 1
= —= == — 0 23
0 Y, Lo nv T (23)
0 0 i i + ! —1'
Y5 Y5 YG Y6
0 0 0 ! 1 + “1—
Ye¢ Ys Yo
L. -
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Then the even-numbered rows and columns are multiplied
by

_ Zia+ Zin
Zia+ Zi+ Zid’

where the n; are determined from the condition of no
self-elastance in the even-numbered loops (Zo = Zys
1). The result is the new elastance matrix corresponding
to the circuit of Fig. 6(b). The elements of this matrix
are already given in terms of the eircuit of Fig. 6(b).
Now we transform each cascade of two unit elements into
its lumped equivalent circuit.? At this stage we have a
completely lumped circuit that can be frequency-scaled
by dividing each L and C by the frequency-scale factor a.
Its value will be determined later. The scaled circuit is
shown in Fig. 6(¢). To arrive at a eircuit like that in Fig,.
4(c), we must split the series capacitors between the former
unit element pairs into preferably equal parts and apply

1,5 (24)

n;

" v, -V 0 0
—Y1 Vi 4+ Yo+ Yo — Yo 0
Y Y
0 —Yas Y+ YVs+— —=
a a
Y. Y
1 0 0 ——‘f “j—* Y
[cl=-
o
0 0 0 — Y
0 0 0 0
0 0 0 0
| o 0 0 0

a capacitance matrix transformation so that all nodes
become a finite ground capacitance. The result of this
procedure is shown in Fig. 6(d).

From this circuit [C1’] and [C¢’] can be written down
by inspection. It remains to reverse the step that led from
the circuit of Fig. 4(a) to that of Fig. 4(b), due to the
transformer [ 7 ]. This step affected only [C¢] and the ele-
ments of [C¢] and [C¢’] pertaining to lines 4 and 5 are
related by

84’ = 8u — 2845 + b5 (25)

Restoring lines 4 and 5 has to leave 84" unchanged, which

¢ In the transformed or prototype variable.
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can be done by the following procedure:

4 5 _
b du’ -+ 845 +845 4
[Cc] =
+0s5 (1 —b)du’ + 0ss 5
(26)

where 0 < b <1 and 85 < 0. This can be verified by
back substitution of (26) into (25). Finally, summation
of [C1] and [Cc¢] leads to [C], which is given in terms of
the element values of Fig. 6(b) in the following:

0 0 0 ]
0 0 0
0 0 0
— Y 0 0
Y, Y,
—Yus+ 1—a “1-a 0
Y. Y.
—14 T Vit Vi ~ Y
—a 1—a
0 — Y6 Yss +Ye+ Y, — Y5
0 0 —-Y; Y; |
(27)
where
Y.Y.
o= @DV
Y45 = —a645
Y:Y,
Vie = (@2 — 1) =0
o= (a ) Ys+ Y,

Actually, the capacitance matrix transformation that
turns all ground capacitances finite and positive remains
to be done, which requires some precautions. If we want to
change the admittance level of line k, k = 2, 4, 6, by an
amount 7, line k 4- 1 has to be changed by the same
amount because those line pairs are de connected and
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cannot be changed independently. The factor a is prefer-
ably chosen as 1/2 to split Y, in half.

B. Proof of the Hyperdominance of [C]

It remains to show the hyperdominance of the final
capacitance matrix [C] and to determine the frequency
scale factor a as well as Y. This will be done for the
design example, however, generalization is straightfor-
ward. First, we notice that all Y in Fig. 6(b) are positive.
By definition the main-diagonal elements of [C] must be
positive and all off-diagonal elements must be negative.
This requires « > 1 and Yy > 0. The hyperdominance
condition is fulfilled for Y = 0. If Y5 > 0, we raise the
admittance level of nodes 4 and 5 by an amount né.
Writing down the hyperdominance condition for the two
nodes we get the condition

Y,
(ni—1) =25 >0, a<05 (28)
This can be fulfilled for any ¥y > 0 and an ns > 1 with a
sufficiently small V4. If @ > 0.5, it has to be replaced by
(1 — a) in (28). In practice, this condition is very easy
to satisfy. This proves the hyperdominance of the matrix
[el.

The fact of & > 1 indicates that the hairpin-line filter
will always have a narrower bandwidth than its corre-
sponding half-wave parallel-coupled-line counterpart. The
bandwidth contraction depends on the amount of coupling.
From (27) we calculate the coupling factor of the second-
ary-side hairpin resonators. After a slight simplification
we get

a? — 1

a2+]l_'

C, =~ (29)

This formula slightly overestimates the coupling, but it
serves as a guideline to select a bandwidth scale factor for a
desired hairpin coupling. In practice, a coupling factor less
than 10 dB is impractical and unnecessarily strong. In
most cases, a = 1.1 to 1.2 (¢, = 20 to 15 dB) is adequate.

The frequency scaling by « is performed on the lumped
prototype variable s. To find the proper scaling of the real
frequeney variable f, we have to make use of the trans-
formation given in (2). If w denctes the fractional band-
width of the unscaled filter and w’ the same for the scaled—
i.e., the hairpin-line filter—the following relationship
holds:

4 ’
w = —tan! {a tan I’ﬂ} . (30)

T 4
For w < 0.3, a good approximation for this equation is
w = aw’. (31)

In general, w' is given and on selection of an appropriate
a the fractional bandwidth for the unscaled half-wave
parallel-coupled-line filter is determined.
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The value for Y5 is normally selected to give about the
same coupling value ¢, as for secondary-side resonators
(@ = 0.5 assumed)

_2YC,
140G,

Yis (32)

but any other reasonable value is possible.

C. Hybrid Forms

Unequal coupling for primary-side resonators can be
used throughout the filter. This is in confrast to the
coupling of secondary-side hairpin resonators that is fixed
for all resonators as soon as o« is chosen. By making
Yiisr =0, b =48,-++, a number of hybrid forms as
shown in Fig. 7(a) and (b) can be created. These hybrid
forms interrupt the surface-wave mode as shown in [27],
and in most cases will be preferred over an all-hairpin
design, even though they do not offer the optimum in
space saving. In addition, the full hybrid form shown in
Fig. 7(a) makes all coupling elements between non-
adjacent nodes in Fig. 4(b) zero, so that the equivalent
cireuit of Fig. 4(c) is exact. As pointed out above, even-
order half-wave parallel-coupled-line filters cannot be
scaled in frequency because they contain an odd number
of unit elements. However, a hybrid form that leaves
a =1 but introduces coupling between primary-side
resonators is possible, as indicated in Fig. 6(c). To design
such a filter the best way to start is to find the capacitance
matrix of the half-wave parallel-coupled-line filter in the
usual way, and then introduce coupling between primary-
side resonators as previously indicated.

In the next section we will give experimental and nu-
merical results. In particular, we must test the validity
of the simplifications that led to the circuit of Fig. 4(e)
and that eventually allowed us to design the filter.

IV. NUMERICAL AND EXPERIMENTAL
RESULTS

The validity of the new design theory was checked by a
number of trial designs. The main reason for this was to
determine the extent to which the coupling elements beyond
adjacent nodes can be safely neglected. The designs of the
underlying half-wave parallel-coupled-line filter were
taken from the table values [67]. The design equations (23)
and (27) are easily programmed on a computer and give
the capacitance matrix of the n-wire line network.

A. Numerical Resulls

Any check of the actual response of the filter has to be
done by means of an exact equivalent circuit. The graph
transformation method by Sato and Cristal [7] was used
for this purpose because it is easier to use than the exact
equivalent circuit of Fig. 4(b). All filters designed and
analyzed had a ripple of 0.1 dB. They were checked for
fractional bandwidths w = 0.05, 0.1, and 0.2. For odd-
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Fig.7. Hybrid forms of hairpin-line/half-wave parallel-coupled—line
filters. (a) and (b) @ # 1. (¢} = 1.
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Fig. 8. Computed response for Type-A hairpin-line filters usmg
exact equivalent circuits (N = 5, w = 0.2).

order filters with w = 0.05, no deviation of the response
from the theoretical was discovered up to @ = 1.2 (corre-
sponding to 15-dB hairpin coupling). At 10-percent band-
width a slight change in the VSWR in the passband was
noticed for &« = 1.2. The results for filters of order N = 5
and w = 0.2 are shown in Fig. 8. Curve (a) is the response
of the hybrid form with no hairpin coupling between
primary-side resonators [Fig. 7(a)] and « = 1.2. This
response is exact, as was pointed out above. For the full
hairpin-line filter with & = 1.1, very small deviations in the
passband are visible, whereas for « = 1.2 [curve (c¢) ] the
maximum VSWR has increased to 1.6 and the bandwidth
is slightly larger than predicted. Curve (d) is the case of a
hybrid filter with @ = 1—i.e., no hairpin eoupling between
secondary-side resonators [see Fig. 7(c)]. The deviations
for this filter are very minor also. In all cases except one,
the desired bandwidth was virtually exact. To minimize
the deviations from the theoretical response, & should not
exceed a value that depends on the bandwidth of the

filter. As a guideline, take « < 1.2 for w < 0.1, which

should be decreased to & < 1.12 for w = 0.2. An even-
order filter (N = 4) of hybrid form with « = 1 and a
hairpin coupling of 14 dB was also tested and found to
agree very closely with the theoretical response.

B. Expertmental Results

A practical stripline version was built and tested. It is a
hybrid filter of the form of Fig. 7(a) with N = 5, w = 0.05,
a = 1.1, and 0.1-dB ripple, as shown in Fig. 9. The printed-
circuit construction was made on 0.125-in (0.3175-cm)
Tellite material (¢, = 2.32); hence the total ground-plan
spacing was 0.25 in (0.635 em). The nominal center
frequency of the filter is 1.5 GHz. The measured attenua-
tion and return loss are shown in Fig. 10. The VSWR in the

passband was equal to or below 1.36, the theoretical value, -
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Fig. 9. Hybrid hairpin-line/half-wave parallel-coupled-line filter
(N = 5, w = 0.05).
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Measured return loss and attenuation for trial hybrid
filter (N = 5, w = 0.05).

Fig. 10.

and the bandwidth as measured between the 16.5-dB
return loss points is approximately 0.049. Both VSWR
and bandwidth are in very good agreement with theory.
The stopband was free of any spurious responses to —50
dB at all frequencies up to the next passband at 4.5 GHz.
A second similar filter with a bandwidth of 0.1 and a
center frequency of 1.6 GHz gave nearly as good results.
It showed a bandwidth contraction of 5 percent that is
attributed to the discontinuity reactances that are in-
evitable at the bend of the hairpin resonators.

V. SUMMARY AND CONCLUSIONS

A new theory for hairpin-line and hybrid bairpin-line/
half-wave parallel-coupled-line filters has been presented,
and explicit design equations have been given. The new
theory gives a better understanding of the process that
leads to bandwidth contraction as the reésonators of a
half-wave parallel-coupled-line filter are folded to form
hairpin resonators. This process is accompanied by a
frequency scaling of the filter response so that a smaller
passband results. Based on this theory, new design pro-
cedures have been developed that allow a rapid computa-



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-22, No. 5, MAY 1974

tion of hairpin-line filters and a variety of hybrid struc-
tures. For bandwidths up to 0.1, the procedure is virtually
exact for any reasonable hairpin coupling. For larger
bandwidth, the effect of the hairpin coupling on the fre-
quency response should be checked.

In all cases, the VSWR was found to deteriorate long
before any significant change in bandwidth was noted.
The design applies to odd-order filters only, but this is not
a sericus restriction. In many cases a hybrid realization
is preferred. But a very satisfactory hybrid design for
even-order filters is presented.

The new design theory slightly improves the agreement
of computed and theoretical response if compared with a
design of comparable hairpin coupling given by Cristal
and Frankel [27]. But more important is the theoretical
explanation the new theory provides for the bandwidth
contraction factor introduced in [27]. The relative band-
width contraction as a function of ¢, given in [2] was
found to be in close agreement with (29). In their experi-
ments, Cristal and Frankel found an even larger band-
width contraetion that they attributed to the finite-length
connections between pairs of lines constituting a hairpin
resonator. Such additional contraction was also found in
the present experiments. Finally, it should be noted that
the amount of bandwidth contraction for hybrid designs
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following the process in [2] is not precisely known. In
contrast, our new design theory gives exact information
about possible hybrid forms and about the parameters
that control them.
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Holographic Imaging with Object Synthesized Apertures
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Abstract——A method for imaging remote moving objects with a
giant thinned holographic array by monitoring the range and range-
rate (Doppler) histories of a coherently illuminated object at the
various elements of the array is discissed. Electrooptic processing
and image retrieval from the raw data collected are described to-
gether with a technique that compensates for image distortion arising
from irrotational object maneuvers. Results of confirming ex-
periments are also given together with remarks on practical
implementation.
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1. INTRODUCTION

N OBVIOUS variation of the conventional synthetic
aperture radar [17] is one in which the imaging
aperture is synthesized by object motion within the
beam of a stationary coherent transmitter—receiver com-
plex. An early account of such an imaging concept em-
ploying radio waves was given by Rogers [2] in an at-
tempt to extend Gabor’s diffraction microscopy (holog-
raphy) [3] to the imaging of moving ionospheric regions.
More recently, infrared and optical imaging apertures
synthesized by linear object motion were discussed
[47],[5]. In these studies uniformity of object motion was
assumed and maintained to avoid image distortion arising



