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New Thecxy and Design for HairPin-Line Filters

ULRICH H. GYSEL, MllMBER, IEEE

Absfracf—Hairpin-line and hybrid hairpin-line/half-wave parallel-

coupled-line filters are preferred filters for microstrip and TEM

printed-circuit realizations. This class of filters offers small size and,

in general, needs no ground connections for resonators.

A new design theory is presented that is based on a sparse capaci-

tance matrix for the array of coupled l@ es that constitute the filter,

as opposed to a sparse-inductance-matrix assumption @ previous

theories that is much harder to satisfy. It is shown that to a good

approximation, hairpin-line filters restdt from frequency-scal@g

half-wave parallel-coupled-line filters. IBecause of this; the band-

width can be accurately predicted.

Design procedures are given for Type-A filters, which are useful

up to 20-percent bandwidth. A variety of hybrid hairpin-line/half-

wave parallel-coupled-line filters is possible, and the’ir design is

explained. Numerical results for a mqnber’ of designs’ and experi-

mental results for a 5-percent bandwidth filter are ‘included.

I. INTRODUCTION

THE hairpin-line filter, like the half-wave parallel-

coupled-lipe filter, is one of the preferred configura-

tions in stripline or microstrip because ground connections

are not required. Basically, the hairpin-line filter can be

thought of as a folded version of a half-wave parallel-

coupled-line filter. The hairpin-line filter makes ‘a much

more compact filter than the half-wave parallel-coupled-

Manuscript received May 2, 1973; revised November 30, 1973.
Thk work was sponsored by a Postdoctoral Fellowship granted to
the author by the Swiss National Science Foundation.

The author is with the Stanford Research Institute, Menlo Park,
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line filter, but is expected to have much the same per-

formance. However, the additional coupling between the

two lines that constitute a hairpin resonator complicates

the design.

The image parameters for the in fipite periodic hairpin

line have been reported by Bolljahn and Matthaei [1].

Only recently, design equations have been given for finite

le~gth hairpin-line filters by Cristal and Frankel [2].

Their design theory is based on the assumption of a sparse

inductance matrix for the array of coupled lines. But for

most parallel-coupled-line-t ype filters, the assumption of a

sparse capacitance matrix is made. This, as Cristal and

Frankel [2] state, corresponds much more closely to the

physical reality than does neglecting inductive coupling

beyond nearest neighbors. Further, this design theory [2]

needs an empirically determined bandwidth contraction

factor, depending on the hairpin resonator coupling.

The present paper gives exact equivalent circuits for

odd-order hairpin-line filters of Types A and B that are

based on a sparse capacitance matrix. This leads to designs

that are exact for any practical purposes up to 20-percent

bandwidth for Type-A filters and up to 50-percent band-

width for Type-B filters. In particular, the bandwidth can

be predicted accurately. From a theoretical point of view,

it is most int cresting that the new design method explains

the bandwidth contraction factor in [2] and particularly

shows that it is independe~t of the number of resonators,

of passband ripple, and, largely, of bandwidth.. This is the
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primary contribution of thenew theory. For the practical

design of these filters, only a slight improvement over

Cristal and Frankel’s design [2] is achieved.

In most cases a hybrid hairpin-line/half-wave parallel-

coupled-line filter will be preferred because a serious

surface-wave-mode problem exists [2] in pure hairpin-line

filters constructed in microstrip form. This mode can be

prevented by the use of hybrid hairpin-line/half-wave

parallel-coupled-line designs. A large variety of hybrid

designs for any bandycidth can be readily developed by the

method presented here. Hybrid even-order falters also can

be designed with high accuracy.

The new design is based on the general ~-wire line, as

discussed by Matsumoto [3]. An n-port is created by look-

ing into the n-ports at the input of an n-wire line that is

terminated in an ideal transformer bank at the far end.
For that n-port an equivalent circuit is developed. By

neglecting insignificant terms, this circuit can be identified

with a modified equivalent circuit of the half-wave parallel-

coupled-line filter. The new theory has been verified with

several trial designs and experimental results on a 57per-

cent-bandwidth filter are presented.

II. EQUIVALENT CIRCUITS FOR ODD-ORDER

HAIRPIN-LINE FILTERS

A. The General n-Wire Line Representation

The general n-wire coupled-transmission line above a

ground plane, shown in Fig. 1, may be described by the

admittance equation:

il

4
.

.

in

.

.

.

k

nXn nXn

[c] –t[c]

nXn nXn

– t[c] [c]

where

= j tan@ = j tan (7rj/2fO);

matrix [C]

propagation constant;

VI

V2
.

.

V.
.

.

(1)

a commensurate length of the network;
(1 – S’)’/’; (2)

frequency variable of the commensurate

network;

quarter-wave frequency of the commen-

surate network;

static capacitance distribution for the

coupled-line network normalized to Y.P–l,

where Y. is ~ normalization admittance

and p is the velocity of light in the medium

of propagation.

The elements of the matrix [C] are defined by:

in ‘2n

a

:

i3 ●
in+3

‘n ~ v2n

i2 I*2

V2 $ i~l

VI V* I

Fig. 1. General coupled n-wire line above a ground plane.

[“C1l – CL7 _c13 . . . . . . .

– c,, C22 –c,, . . . . . .

[c] =

1...–C,3 & . . . . . .

. . .

. . .

. . . c-. ..nn

where

C,j = Cj,

C,j >0

C;i > x Cij, forz = 1,2,...,n
j+i

(3)

(4)

It is convenient to assign separate voltage and current

vectors to the two different sides of the n-wire line, called

primary side and secondary side, respectively:

[IJ = [ibi2, +-. ,iJT

[IJ = [i~+~,i~+~,.. -,i2n]T

[VI] = [V1,V2, . . . ,VJ’

IY2] = [%+,,%+,,.. .,v,n]T. (5) ‘

A compact form of (1) therefore reads:

Cl=i% ;:IH “)
Hairpin-line filters can be visualized as n wire lines with

interconnections on both sides. Fig. 2 shows hairpin-line

filters of Types A and B, both of odd order. To derive

their equivalent circuit we follow a procedure described by

Matsumoto [3, ch. 8]. The interconnections on both sides

of the n-wire line are made with ideal transformer banks.

Let us terminate the secondary side by the transformer
bank Tz. ‘Then the transformed variables are defined as

follows :

[12’] = [T2][12] (7)

and

[VJ = [T2]T[VZ’] (8)

with [T2] a ?~ x n matrix.

The case of a hairpin-line filter of Type A, together with

the appr~priate form of [T.J, is shown in Fig. 3. Sub-

1 T denotes the transposed matrix or vector.
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[Iiillllllj
INPUT OUTPUT

TYPE A

INPUT OUTPUT

TYPE B

Fig. 2. Hairpin-line filters.

stituting (8) into the second row of (6) and multiplying

both sides by ~Z’2] from the left gives

[12’] = [T,][L] = – : [TJ[C]13’1]

+ + [:~21[fq[~21T[v2’1. (9)

However, [I,’] = [0], as can be seen from Fig. 3. We solve

(9) for [V,’] and substitute this into the first row of (6).

With the notation

[c] = [T2][C’][T2]’

thk yields

{
[lJ = : [C] – : [C][TJTIC]-’[TJICI }

(lo)

[v,]. (11)

Recognizing that t2= 1 – S2,we win write this as

{ I
[~~] = + [CL]+ s[CC] [VJ (12)

where

[Cc] = [Cl[TilT[cl-’[TJ[cl (13)

[CL] = [C] – [Cc]. (14)

If some lines on the primary side are interconnected, we

r-
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Fig. 3. *wire line and transformer banks to form a hairpin-line
filter of Type A (n = 8).

proceed in a sidar way

which is given by

[I,’] =

[v,] =

525

with a transformer bank T1,

[T,][I,]

[T,]T[VJ] (15)

where [TJ is an ml X n matrix.

Substituting (15) into (12) results in

{ 1
[1/] = [T,] ; [CL]+ .s[CCJ [TI]’[VI’]. (16)

Now, for the example of Fig. 3, we have to iinpose the

condiiion id’ = O. This requires the hairpin resonator that

is formed by connecting nodes 4 and 5 on the primary

side2 to operate essentially in an odd mode as long as only

the admittance matrix of the n-wire line without termina-

tions is considered. The odd mode of operation is fo~ced by

changing the voltage reference of lines 5–8 and then

equating V4to —V5. The transformer network [Tl] is also

shown in Fig. 3. With the notation

[CL’] = [TI][CL][TI]T

[Cc’j = [TI][CC][TI]T (17)

(16) can be written as

[ }
[II’] = : [CL’]+ 8[CC’] [v{] (18)

and

[CL’] + [Cc’] = [T,][C][T,]T = [C’]. (19)

B. The Equivalent Circuit

To find an equivalent circuit for the odd-order hairpi~-

line filter of Type A, we notice that (12) and (18) repre-

sent a parallel connection of two n and ml ports, respec-

tively, one purely lhductive, and the other purely capaci-

tive. Fig. 4(a) shows the equivalent circuit corresponding

to (12). Since ,& Type-A hairpin-line filter has no lines

connec~ed to ground, no grounded inductor can appear in

the equivalent circuit. Series inductors exist between those

primary side ports that show a dc path between them

due to an interconnection on the secondary side. All

inductors are coupled to each other and, to satisfy (14),

these inductive couplings are accompanied by capacitive

couplings of the same amount, which can be seen as

follows. We recall that [C] is assumed to be a sparse

matrix. If we denote the elements of [CL] and [Cc] by

~ij and a,j, respectively, then (14) can be written as

I

~ij + ti~j = 1–C,f, j=~+l (20)

\ o, j#i, i*l

j Throughout the rest of the paper such hairpin resonators will be
simply called primary-side resonators. In the same way, hairpin
resonators folded on the secondary side and with their open-circuited
ends on the primary side are called secondary-side resonators.
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@l

1’

T--l 1
T~1 iE&FEm-’

--I--I-T-T-IT -r
c. 1 ~ 1 1 L 1 1 0

id

Fig. 4. Equivalent circuit of the Type-A hairpin-line filter (n = 8).
(a) Without transformer bank T,. (b) Complete equivalent
circuit. (c) Simplified equivalent circuit.

or ] 7;; \ = I ~ij ], for all j # i, i ~ 1, which holds for all

inductive couplings.

The effect of the transformer [TJ, which is not yet

included in the circuit of Fig. 4(a), is to combine nodes

4 and 5 in one single node 4’. This leads to the final

exact equivalent circuit of Fig. 4(b). Due to the form of

[T,], the transformation, (19) results also in a sparse

[C’] matrix, and thus an “equation analogous to (20)

could be written down for the elements of [CL’] and

[cc’].

The numerous capacitive and inductive coupling ele-

ments beyond immediate neighbors in Fig. 4(a) and (b)

decrease rapidly the more lines they cross. If we define

coupling factors of the [C] matrix by

C,j

Cp= (Citcj,) ‘/’‘
j=~+l (21a)

or, in decibels,

Cp = – 20Ioglo Cp (21b)

then the coupling elements between two nonadjacent

lines having, say, r lines between them is on the order of
Cp;+l . This was verified numerically in a number of cases.

For many practical hairpin-line filters these coupling

elements are so small (e.g., less than 1/50 of the mutual
coupling in the original array) that they can be safely

neglected. This leads to a simplified equivalent circuit as

shown in Fig. 4(c).

Finally, we will examine the zeros of the parallel-tuned

circuits that exist between ports 2’ and 3’, and ports 5!

and 6’. If y,[ and 6%,’ denote the elements of [CL’] and

[CC’], respectively, the passivity of the circuit requires

~i, ,+1’ <0, i = 2,5 (positive inductors). A detailed analy-
sis of (13) and (18) shows that ~i,;+l’ > 0, i = 2,5,

indicating a negative capacitor. Hencej these series

branches create a transmission zero:

u~i~+l = ( –’Yt,t+l’/&!z+l’) 1/2 21, i = 2,5. (22)

1’

1- 11

@j+wFFl-+q-
0 0

(Ii

Fig. 5. Equivalent circuit of the Type-B hairpin-line filter (n = 8).
(a) Complete circuit. (b) Simplified circuit.

Equation (22) holds with an equal sign for Ci,,+l’ = O.

The physical reason for this real transmission zero be-

comes obvious if we look into the n-wire line from ports

2’ and 3’. From these ports a secondary-side hairpin

fesonator looks essentially like a microwave C section. The

latter has a real transmission zero r ~ 1. Actually, the

r-network present in Fig. 4(c) between ports 2’ and 3f is

one possible form for an equivalent circuit of a C section.

The procedure used to develop the equivalent circuit for

Type-B filters is analogous to that for Type A. The only

difference is the form of the transformer banks [Tl] and

[T,]. Fig. 5 gives the complete and the simplified circuit

for such a filter consisting of n = 8 lines.

The analysis presented in this section works well as long

as input and output are on the same side of the n-wire

line. This is the case for all odd-order filters. For even-

order filters, if the input is on the primary side, then the

output is on the secondary side. The output is therefore no

longer an accessible port in an equivalent circuit of the

form of either Fig. 4 or Fig. 5. A method to handle those

cases is presented in the next section, together with the

design procedure for odd-order filters.

III. DESIGN PROCEDURES FOR

HAIRPIN-LINE FILTERS

In this paper, design procedures only for Type-A filters

are developed. For the design of hairpin-line filters, it is

most helpful to remember the close relationship between

these filters and the half-wave parallel-coupled-line filters.

In the limiting case, a hairpin-line filter with no coupling

between the lines constituting hairpin resonators (here-
after simply called hairpin coupling) must be identical

with a half-wave parallel-coupled-line filt er. Therefore,

the equivalent circuit of the hairpin-line filter, shown in

Fig. 6(a), must be equivalent to the circuit of Fig. 4(b).

A. The Design Procedure

Networks containing unit elements like those shown in

Fig. 6(a) cannot be frequency scaled in general (see e.g.,

Wenzel [4]). What can be scaled in frequency is the cas-

cade connection of two unit elements, which can be repre-

sented differently by means of lumped equivalent circuits.

one such representation is a ir network containing a series
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‘a)=m
‘bfEmr-T5il=Ei15

m 1 ma 1 1a
0 0

-~

Fig. 6. Development of hairpin-line filters.

branch with a parallel-tuned circuit that creates the real

transmission zeros at s = *1 (the series C is negative).

When this circuit is scaled by ~’ =? af, the new circuit can

be realized as a microwave C section [4].

The effect in this simple case is the introduction of

coupling between two formerly uncoupled lines. But in-

troducing coupling between formerly uncoupled lines is

exactly the process that leads from half-wave parallel-

coupled-line filters to hairpin-line fidters. Therefore, it must

be possible to frequency scale any odd-order half-wave

X nl

1 –1

–1 1+21+22

o –z,

o 0

0 0

X n5

o 0 0“

–z, o 0

z, + 23 + z, – z, o

– 24 ‘2,+2,+1 –1

o –1

——

1

1. 1

1

– 72

0

0

0
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parallel-coupled-line filter and transform it into a hairpin-

line filter. It actually is possible to do this. We will prove

it by carrying out the” transformation steps and showing

that the final capacitance matrix of the rewire line is

hyperdominant.

First, we outline the design procedure steps, and then

give a closed form for the capacitance matrix of the n-wire

line. This can be immediately used to determine the physi-

cal dimensions of the filter. We start with the selection of

an appropriate half-wave parallel-coupled-line filter of

odd-order N, as depicted for N = 3 in Fig. 6(a), For

narrow-band cases this circuit has to be augmented by

unit elements at the input and output to give reasonable

impedance levels in the interior of the filter. Element

values for the capacitors and unit elements may be taken

from Cristal [5] or Horton and Wenzel [6]. The latter

contains extensive tables for element values of interdigital

filters. Filters with short-circuited input lines are duals of

half-wave parallel-coupled-line filters ‘of Type A. There-

fore, using these tables we have to interpret the table

value as elastances of the capacitors and impedances of

the unit elements.

Next, we remove the series capacitors between every

other unit element, as indicated in Fig. 6(b). This can be

done most conveniently by an elastance matrix trans-

formation. By using the tables in [6], the tabulated values

directly become the normalized elastances and impedances

if divided by 7.54. By labeling them 21,22..0, we form the

initial elastance matrix as given on the left side in the

following:

Xnl,

X n5

1
——

Y,
0

0 0

0 0

0 0

1_-
Y5

0 (23)
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Then the even-numbered rows and columns are multiplied

by

zi–-l + Zi+l
n; =

2;–1 + Zi + Zi+l ‘
i = 1,5 (24)

where the ni are determined from the condition of no

self-elastance in the even-numbered loops (20 = ZN+S =

1). The result is the new elastance matrix corresponding

to the circuit of Fig. 6(b). The elements of this ‘matrix

are already given in terms of the circuit of Fig. 6(b).

Now we transform each cascade of two unit elements into

its lumped equivalent circuit.8 At this stage we have a

completely lumped circuit that can be frequency-scaled

by dividing each L and C by the frequency-scale factor a.

Its value will be determined later. The scaled circuit is

shown in Fig. 6(c). To arrive at a circuit like that in Fig.

4(c), we must split the series capacitors between the former

unit element pairs into preferably equal parts and apply

0 – Y,3 Y23+Y3+: –:

o 0

[C] = :

0 0

0 0

Y, Y,
—— —.

Y45
a a

0 – Y,,

o 0

[

o 0 0 0

0 0 0 0

a capacitance matrix transformation so that all nodes

become a finite ground capacitance. The result of thk

procedure is shown in Fig. 6(d).
From thk circuit [c~’] and [Cc’] can be written down

by inspection. It remains to reverse the step that led from

the circuit of Fig. 4(a) to that of Fig. 4(b), due to the

transformer [Tl]. This step affected only [Cc] and the ele-

ments of [CC] and [Cc’] pertaining to lines 4 and 5 are

related by

844’ = 644— 2ik + 655. (25)

Restoring lines 4 and 5 has to leave 64,’ unchanged, which

a In the transformed or zmototvoe variable.
“.

can be done by the following procedure:

[cc] =

4 5
.

.

.

b 644’ + 645 +645

1
+845 (1 – b)644’ +fs45

.

.

.

4

5

(26)

where O < b < 1 and &5 s O. This can be verified bv

back substitution of (26) into (25). Finally, summatio~

of [CL] and [Cc] leads to [C], which is given in terms of

the element values of Fig. 6(b) in the following:

o 0 0

0 0 0

0 0 0

– Y45 o 0

–Y45++U –~ o

Y4_— -
l–a

+a + Y, + Y,, – Y56

o – Ym Y5fj+Y6+Y7 –Y,

o 0 – Y, Y7

(27)

where

Y23 = (a2 – 1)
Y2Y3

Y, + Y=

Y45 = – &!645

Y5Yf,
Y56 = (a’ – 1)

Y5+Y~”

Actually, the capacitance matrix transformation that

turns all ground capacitances finite and positive remains

to be done, which requires some precautions. If we want to

change the admittance level of line k, k = 2, 4, 6, by an

amount nh, line k + 1 has to be changed by the same

amount because those line pairs are dc connected and
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cannot be changed independently. The factor a is prefer-

ably chosen as 1/2 to split Y~ in half.

B. Proof of the Hyperdominance oj [C]

It remains to show the hyperdominance of the final

capacitance matrix [C] and to determine the frequency

scale factor a as well as Y.is. This will be done for the

design example, however, generalization is straightfor-

ward. lFirst, we notice that all Yi in Fig. 6(b) are positive.

By definition the main-diagonal elements of [C] must be

positive and all off-diagonal elements must be negative.

This requires a >1 and Y~~ >0. The hyperdominance

condition is fulfilled for YM = O. [f Y4J >0, we raise the

admittance level of nodes 4 ancl 5 by an amount nt2.

Writing down the hyperdominance condition for the two

nodes we get the condition

(n4 – 1) ~ – 2Y,, >0, a < 0.5. (28)

This can be fulfilled for any Y1 >0 and an nl >1 with a

sufficiently small Y15. If a >0.5, it has to be replaced by

(1 – a) in (28). In practice, this condition is very easy

to satisfy. This proves the hyperdlominance of the matrix

[c].

The fact of a ~ 1 indicates that the hairpin-line filter

will always have a narrower bandwidth than its corre-

sponding half-wave parallel-coupled-line counterpart. The

bandwidth contraction depends on the amount of coupling.

From (27) we calculate the coupling factor of the second-

ary-side hairpin resonators. After a slight simplification

we get

& — ][

c“—P-
C#+i’

(29)

Thk formula slightly overestim,~tes the coupling, but it

serves as a guideline to select a bandwidth scale factor for a

desiredl hairpin coupling. In practice, a coupling factor less

than 10 dB is impractical and unnecessarily strong. In

most cases, a = 1.1 to 1.2 (CP = 20 to 15 dB) is adequate.

The frequency scaling by a is performed on the lumped

prototype variable s. To find the proper scaling of the real

frequency variable f, we have to make use of the trans-

formation given in (2). If w denckes the fractional band-

width of th~ unscaled filter and w’ the same for the scaled—

i.e., t]he hairpin-line filter-the following

holds :

‘o‘:tan-’{atana

relationship

(30)

For w <0.3, a good approximation for this equation is

w = ad. (31)

In general, w’ is given and on selsction of an appropriate

a the fractional bandwidth for the unscaled half-wave

parallel-coupled-line filter is determined.

The value for Y,, is normally selected to give about the

same coupling value CP as for secondary-side resonators

(a = 0.5 assumed)

nT7 n
xx 4LP

Y,5 =
l+CP

(32)

but any other reasonable value is possible.

C. Hybrid Forms

Unequal coupling for primary-side resonators can be

used throughout the filter. This is in contrast to the

coupling of secondary-side hairpin resonators that is fixed

for all resonators as soon as a is chosen. By making

Y~,k~l = O, k = 4,8,. “ “, a number of hybrid forms as

shown in Fig. 7(a) and (b) can be created. These hybrid

forms interrupt the surface-wave mode as shown in [2],

and in most cases will be preferred over an all-hairpin

design, even though they do not offer the optimum in

space saving. In addition, the full hybrid form shown in

Fig. 7(a) makes all coupling elements between non-

adjacent nodes in Fig. 4(b) zero, so that the equivalent

circuit of Fig. 4(c) is exact. As pointed out above, even-

order half-wave parallel-coupled-line filters cannot be

scaled in frequency because they contain an odd number

of unit elements. However, a hybrid form that leaves
a = 1 but introduces coupling between primary-side

resonators is possible, as indicated in Fig. 6(c). To design

such a filter the best way to start is to find the capacitance

matrix of the half-wave parallel-coupled-line filter in the

usual way, and then introduce coupling between primary-

side resonators as previously indicated.

In the next section we will give experimental and nu-

merical results. In particular, we must test the validity

of the simplifications that led to the circuit of Fig. 4(c)

and that eventually allowed us to design the filter.

IV. NUMERICAL AND EXPERIMENTAL

RESULTS

The validity of the new design theory was checked by a

number of trial designs. The main reason for this was to

determine the extent to which the coupling elements beyond

adjacent nodes can be safely neglected. The designs of the

underlying half-wave parallel-coupled-line filter were

taken from the table values [6]. The design equations (23)

and (27) are easily programmed on a computer and give

the capacitance matrix of the n-wire line network.

A. Numerical Results

Any check of the actual response of the filter has to be

done by means of an exact equivalent circuit. The graph

transformation method by Sato and Cristal [7] was used
for this purpose because it is easier to use than the exact

equivalent circuit of Fig. 4(b). All filters designed and

analyzed had a ripple of 0.1 dB. They were checked for

fractional bandwidths w = 0.05, C.1, and 0.2. For odd-
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Fig. 8. Computed response for Type-A hairpin-line filters using
exact equivalent circuits (N = 5, w = 0.2).

order filters with w = 0.05, no deviation of the response

from the theoretical was discovered up to m = 1.2 (corre-

sponding to 15-dB hairpin coupling). At 10-percent band-

width a slight change in the VSWR in the passband was

noticed for a = 1.2. The results for filters of order N = 5

and w = 0.2 are shown in Fig. 8. Curve (a) is the response

of the hybrid form with no hairpin coupling between

primary-side resonators [Fig. 7(a) ] and a = 1.2. This

response is exact, as was pointed out above. For the full

hairpin-line filter with a = 1.1, very small deviations in the

passband are visible, whereas for a = 1.2 [curve (c)] the

maximum VSWR has increased to 1.6 and the bandwidth

is slightly larger than predicted. Curve (d) is the case of a

hybrid filter with a = l—i.e., no hairpin coupling between

secondary-side resonators [see Fig. 7(c) ]. The deviations

for this filter are very minor also. In all cases except one,

the desired bandwidth was virtually exact. To minimize

the deviations from the theoretical response, a should not

exceed a value that depends on the bandwidth of the

filter. As a guideline, take a <1.2 for w <0.1, which

should be decreased to a < 1.12 for w = 0.2. An even-

order filter (N = 4) of hybrid form with a = 1 and a

hairpin coupling of 14 dB was also tested and found to

agree very closely with the theoretical response.

B. Experimental Results

A practical stripline version was built and tested. It is a

hybrid filter of the form of Fig. 7(a) with N = 5, w = 0.05,
a = 1.1, and O.l-dB ripple, as shown in Fig. 9. The printed-

circuit construction was made on O.125-in (0.3175-cm)

Tellite material (c, = 2.32); hence the total ground-plan

spacing was 0.25 in (0.635 cm). The nominal center

frequency of the filter is 1.5 GHz. The measured attenua-

tion and return loss are shown in Fig. 10..,The VSWR in the

passband was equal to or below 1.36, the theoretical value,

Fig. 9. Hybrid hairpin-line/half-wave parallel-coupled-line
(N = 5, w = 0.05).
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Fig. 10. Measured return loss and attenuation for trial hybrid
filter (N = 5, w = 0.05).

and the bandwidth as measured between the 16.5-dB

return loss points is approximately 0.049. Both VSWR

and bandwidth are in very good agreement with theory.

The stopband was free of any spurious responses to – 50

dB at all frequencies up to the next passband at 4.5 GHz.

A second similar filter with a bandwidth of 0.1 and a

center frequency of 1.6 GHz gave nearly as good results.

It showed a bandwidth contraction of 5 percent that is

attributed to the discontinuity reactance that are in-

evitable at the bend of the hairpin resonators.

V. SUMMARY AND CONCLUSIONS

A new theory for hairpin-line and hybrid hairpin-line/

half-wave parallel-coupled-line filters has been presented,

and explicit design equations have been given. The new

theory gives a better understanding of the process that

leads to bandwidth contraction as the r&onators of a

half-wave parallel-coupled-line filter are folded to form

hairpin resonators. This process is accompanied by a

frequency scaling of the filter response so that a smaller

passband results. Based on this theory, new design pro-

cedures have been developed that allow a rapid computa-
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tion of hairpin-line filters and a variety of hybrid struc-

tures. For bandwidths up to 0.1, the procedure is virtually

exact for any reasonable hairpin coupling. For larger

bandwidth, the effect of the hairpin coupling on the fre-

quency response should be checked.

In all cases, the VSWR was found to deteriorate long

before any significant change in bandwidth was noted.

The design applies to odd-order filters only, but this is not

a serious restriction. In many cases a hybrid realization

is preferred. But a very satisfactory hybrid design for

even-order filters is presented.
The new design theory slightly improves the agreement

of computed and theoretical response if compared with a

design of comparable hairpin coupling given by Cristal

and Frankel [2]. But more important is the theoretical

explanation the new theory provides for the bandwidth

contraction factor introduced in [2]. The relative band-

width contraction as a function of CP given in [2] was

found to be in close agreement with (29). In their experi-

ments, Cristal and Frankel found an even larger band-

width contracticin that they attributed to the finite-length

connections between pairs of lines constituting a hairpin

resonator. Such additional contraction was also found in

the present experiments. Finally, it should be noted that

the amount of bandwidth contraction for hybrid designs
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following the process k [2] is not precisely known. In

contrast, our new design theory gives exact information

about possible hybrid forms and about the parameters

that control them.
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Abstract—A method for imaging remote moving objects with a

giant thinned holographic array by monitoring the range and range-

rate (Doppler) histories of a coherently illuminated object at the

various elements of the array is discussed. Electrooptic processing

and image retrieval from the raw data collected are described to-

gether with a technique that compensates for image distortion arising

from irrotational object maneuvers. Results of confirmirig ex-

periments are also given together with remarks on practical

implementation.
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I. IhTRO13UCTION

AN OBVIOUS variation of the conventional synthetic

aperture radar [1] is one in wh~ch the imaging

aperture is synthesized by object motion within the

beam of a stationary coherent transmitter-receiver com-

plex. An early account of such tin imaging concept em-

ploying radio waves was given by Rogers ~2] in an at-

tempt to extend (labor’s diffraction microscopy (holog~

raphy) [3] to the imaging of moving ionospheric regions.
More recently, infrared and optical imaging apertures

synthesized by linear object motion were discussed

[4],[5]. In these studies uniformity of object motion was

assumed and maintained to avoid image dktortion arising


